

1 移植無代かき栽培にチャレンジ

岩見沢地域ではおよそ1，000ha普及しています。団粒構造を破壊しない水稲の栽培方法で，田畑輪換が可能となり，空知型輪作体系を目指すことができます。

無代かき水田では重労働となる，ゴミのかき上げ作業がないことから，労働軽減技術として農作業に従事する高齢者や女性にも，面積が拡大することが喜ばれています。

生産費と労働時間

慣行の移植栽培と生産費，労働時間は同等です。

乾田直播のレーザー均平機を利用したは種床造成技術を応用したことで，安定生産が可能となりました。

岩見沢地域では，輪作品目の一つとして定着してい ます。

項 目	移植（完結型） 10ha規模	移植（完結型） 20ha規模	無代かき栽培 20ha規模
主な特徴	機械の稼働率から個別経営では高コスト	機械の稼働率は○で あるが，春先の労働時間が大きい	代かき作業がなく，団粒構造の破壊がない
10a当り生産費	100，245円	93，563円	94，653円
10a当り労働時間	16．0時間	14．5時間	15．5時間
メリット	慣れた作業である。	慣れた作業である。	ゴミ上げ作業がない。 トラクタの汚れがない。
デメリット	部分ないし機械共同 ができなければ，低米価では生産原価が赤字である。	春先（育苗•移植） の労働時間が家族労働での限界を超えて いる。	鎮圧ローラーや均平機などが必須である。

※Hokkaido＿営農Navi JAいわみざわ版で作成。表示した規模での単作経営として試算。段取時間•減価償却費他すべて含むが，家族労賃は含まない

2 導入によるメリットと注意点

作業機の導入が必要（機械費用を考える）

一般の移植体系よりほ場づくりにやや時間を費やすため，10a当たりの労働時間は大きくなります。生産費では，代かきロータリーに代わる作業機の投資が大きいことが課題で，次の作業機が必要です。汎用性の ある作業機なので，共同購入•利用などを行い，機械費用の低減に努めましょう！

	$\begin{aligned} & \text { 投 資額 } \\ & \text { 千円 } \end{aligned}$
鎮压ローラー（5．4m）	1，400
パワーハロー（2．4m）	1，500
3 連プラウ（16インチ）	1，400
スタブルカルチ（7本爪）	1，000
レーザー均平機（直装式）	4，000
合計	9，300

投資額は 3 倍 です。機械費用は年当たり で 2 倍です。 2～3 戸で仲良く使いまし ょう！

－

\qquad

[^0]

代かきと無代かきの生育の違い

生し，根が攻撃される。表土剥離も顕著。

＜水中に多くの発根が見られる＞

透排水性が良好であるため，白い根が水中 にも張りだしている。

3 施肥の注意点（育苗時）

＜必要な理由＞
○苗質が向上，植え付け姿勢が安定します。
○局所施肥で施肥効率が向上します。

－ロング肥料の使用方法

＜肥料銘柄＞

○乳苗，稚苗，中苗のマット栽培
エコロング413 100日タイプ
○成苗ポット栽培
マイクロロングトータル280 100日タイプ
＜施肥方法＞
専用施肥機を播種機にセットし，は種時に同時処理を行いましょう。
＜施肥量＞
マット苗：100g／ 1 冊当たり
（35冊／10aで，800円程度）
ポット苗： $50 \mathrm{~g} / 1$ 冊当たり
（50冊／10aで，1，200円程度）

○育苗管理を徹底し，育苗期間中に八ウス内を高温，
多湿にしないでください（溶出のコントロール）。
○生育がやや早まるため，育苗日数を遵守しましょう。

4 施肥の注意点（本田）

Ak絁椱元田での栽培をオススメします！

○オススメ理由

1 土塊のこなれがよく，ほ場づくりが容易です。
2 空知型輪作体系が実践できます。
3 減肥ができるのでECOです。

減肥を行うこと

復元田の無代かき栽培では，窒素の発現量が慣行田（代 かき田）より期待でき，減肥をしても生育，収量を確保 することができます。

○施肥の注意点（復元田の無代かき栽培）
1 いつもの窒素施肥量より，50～70\％程度は減肥します。
2 側条肥料で施肥します（全層はなくてよい）。
3 土壌診断を行い地力窒素を測定しておきましょう！分析結果を右表の目安に当てはめ，さらに減肥を行う。

窒素減肥 目安 $(\mathrm{kg} / 10 \mathrm{a})$	可給態窒素分析値 $(\mathrm{mg} / \mathrm{l} 00 \mathrm{~g})$		
14未満	$14 ~ 16$	16 以上	
復元田	0.0	0.5	1.0

区 分		前作	側条 比率 \％	$\begin{aligned} & \text { 初期 } \\ & \text { 生育 } \\ & \text { 本 } / \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} & \text { 穂数 } \\ & \text { 本/m² } \end{aligned}$	$\begin{aligned} & \text { 籾数 } \\ & \text { 千粒/m² } \end{aligned}$	$\begin{gathered} \text { 精玄 } \\ \text { 米重 } \\ \mathrm{kg} / 10 \mathrm{a} \end{gathered}$	$\begin{gathered} \text { 屑米 } \\ \text { 重 } \\ \mathrm{kg} / 10 \mathrm{a} \end{gathered}$	$\begin{gathered} \text { 蛋白 } \\ \text { 値 } \\ \% \end{gathered}$	$\begin{gathered} \text { 整粒 } \\ \text { 歩合 } \\ \% \end{gathered}$
慣行（代かき）	6.0	水稲	60	512	498	24.3	526	21	7.4	78
50\％施肥	3.0	緑肥	100	570	636	30.6	600	44	8.8	73
25\％施肥	1.5	緑肥	100	530	573	27.7	641	31	8.7	75

[^1]
復元田の無代かきは高タンパク傾向

右図は現地5カ所での試験結果を示しています。復元田の無代 かき栽培では，収量は優るものの，低タンパク米の生産は期待 できません。
減肥をしても，地力窒素の吸収量が多いため，稲体の窒素吸収量は旺盛です。

推奨は業務用米の作付

これまでの数年の試験•調査結果から復元田での無代かき栽培 の特徴をまとめました。
－特徴と栽培のポイント
1 空知型輪作体系の 1 品目であり，導入により，麦•大豆の連作を回避することが可能です。
2 減肥を行っても，収量は維持•向上するが，高タン パク傾向です。
3 窒素吸収量が旺盛なことから，稈長が長い特徴を持 つ品種は，倒伏の恐れがあり，不向きです。

このことからJAいわみざわ地域では，8． 5% 以上の高タン パクの業務用向き，通称「契約きらら」が適するため，当面は「きらら397」を推奨品種とします。

侀伏しEた。

113

5 ほ場の管理の実際

Rade＊
乾田直播と同様に，小麦収穫後の秋に土づくりを行うことを， お勧めします。使用する作業機も乾田直播とほぼ同様です。
脆弱となった畦䚿畔，水口，落し口等も修復しておきましょう！

（1）融雪促進：均平作業を円滑に行うために必ず必要です。
（2）粗 耕 起：十分な土壌乾燥を待ってスタブルカルチで粗耕起を行います。
（前年にプラウ耕ができなかった場合）
（3）均
平：十分な土壌乾燥を待って作業を丁寧に行います。
（4）施
肥：試験結果から，生育後半まで根に活力があるので，泥炭土壌では，
$3 ~ 5$ 割程度の減肥が可能です。
（5）耕 起：直径 2 cm m 以下土塊が 70% 以上が基本です。
（小麦より細かく，大豆より粗い程度）
作業機：正転•逆転ロータリー，パワーハローなど
（6）鎮 圧：自重の重いケンブリッジローラー（5．4m幅以上）で，足跡が沈ま ない程度になるまで踏みます。
（基本は2回）
トラクタのタイヤは接地圧の低い，ラジアルタイヤまたは，ダブル タイヤで行いましょう！
（タイヤ跡が，植え付けに悪影響を及ぼす）
（7）入 水：移植 $5 \sim 7$ 日前程度から入水を開始し， 10 cm 程度の深水とする。減水と併せて目土にします。
（日減水深を速やかに 2 cm 以内に戻すため）

作業工程

粗耕起

均平

施肥•耕起

鎮压

入水

移植

耕起する作業機は砕土ができれば，何でも構いません。減肥のできる復元田では，側条肥料のみ で，栽培することを前提に技術を組み立てています。全層施肥が必要な場合は，均平後に施肥し ましょう！
ただし，倒伏にはくれぐれも気をつけましょう！

移植時の注意点
（1）入水後： 10 cm 程度の水を張ったら，水見板を設置します。数日間は24時間置きに漏水の状況を確認します。 （水深が 10 cm になるのに $4 ~ 5$ 日かかる場合があります。）

1 日当たりの減水深が把握できたら，移植予定日を考慮して追加の入水量を決めます。 （この時点で漏水が激しい，もしくは減水深が落ち着かない場合は，無代かきを断念しましょう！）

（2）移 植：水の駆け引きが重要です。ヒタヒタの水を厳守してください。 （移植時の水が少ない場合：田植機が走行不能） （移植時の水が多い場合：浮き苗が発生）

6 除草剤使用の注意点

初期剤や薬害が発生しやすい除草剤は使用できません。
初期又は初中期一発剤で，根に影響を与える薬害の発生が心配される除草剤 も使用してはいけません。
活着期以降，日減水深が 2 cm 程度に収まらない場合や，薬害発生の不安を感 じたときには，6月上～中旬にクリンチャーEW，6月下旬にクリンチャー バスME液剤を散布する体系処理に変更し，一発処理剤は使わないようにし ましょう。（この方法は乾田直播の除草技術と同じです。）

無代かきを行った農家の感激：ベスト3

（1）重労働であるゴミ上げ作業がなく，家族に喜ばれた。
（2）代かき作業よりも，均平や鎮圧作業の方が，息子に教えやすかった。
（3）初期生育が見た目で旺盛なのがわかった。言うとおり減肥して良かった。

無代かきを行った農家の不満：ワースト3

①鎮圧があまく，漏水して減収した。古い暗渠孔から漏水して減収した。（水田基盤の不備） （2）植え付けるときに水を落としすぎて，田植機に土がへばりつき，再入水して移植した。 （3）植え付けるときに水が多すぎて，浮き苗が多くなり，落水を待って移植した。番外：やや小出来になった。緩効性の肥料が必要かも…

普及センターでは聞き取りや，可能な限り様々な調査を現在も行ってい ますが，「一度うまくいくとやめられない。」と，岩見沢の農家の評判が上々 の技術です。
皆さんも是非「無代かき栽培」にチャレンジしてみてください！

[^0]: －

[^1]: ※H22の試験成績から作成。品種はななつぼし，きら5397で，中苗，成苗の18区の平均値。

