5 施肥の注意点

地壌条件別の施肥量（大地の星，多収専用）

まず土壌群の違いによる稲の生育の特徴を把握しておきましょう！その特徴と総窒素施肥量を重視して，施肥量 を決定します。乾田，湛水とも施肥量はほぼ同じで，空知型輪作体系の実践を奨励する点から，復元田1年目を基本に，施肥体系を組み立てます。

土 壌 群	土 壌 の 特 徴	稲の生育の特徴
褐色森林土 （洪積土）	強粘土で透水性を不良にしている場合が多く，下層土が硬い。	全般に小出来傾向であり，茎数の確保が困難である。
$\begin{gathered} \text { 灰色台地土 } \\ (\text { 洪積 土) } \end{gathered}$	強粘土で透水性が極めて不良であり，下層に酸化沈積物が多い。	初期生育不良と秋優り傾向で登熟が遅れる。
褐色低地土 （沖積土）	粘土含量が多く，有効土層も深い。グライ層がなく，透水性良好である。	移植後の活着がよく，分けつも良好で茎数確保が容易である。
$\begin{gathered} \text { 灰色低地土 } \\ (\text { 沖積 土) } \end{gathered}$	斑紋のない灰色の土壌で，透水性がやや不良である。	初期生育がやや不良で，茎数の確保が困難である。後半の生育は旺盛となり，登熟歩合を低下させ，青米，屑米歩合が高まり品質の低下を招く。
$\begin{gathered} \text { グ ラ } \\ \text { (沖積 } \pm) ~ \end{gathered}$	透水性不良，粘質が強い。 グライ層が出現する。 表土の粘土が多く，透水性が極めて不良である。	初期生育が極めて不良であり，根の伸長も悪く，還元も進み生育不良を招く。全般に生育が遅れ気味で登熟が悪い。
	下層にヨシを主体とした泥炭があり，地下水位も高い。	初期生育不良と秋優り傾向で登熟が遅れる。

表 復元田施肥量の目安（窒素）

土壌タイプ	窒素 N$) \mathrm{Ng} / \mathrm{Naa}$			
	基肥	追肥	合計	
泥	炭	土	$2 \sim 4$	$2 \sim 4$
洪	積	土	$4 \sim 6$	
沖	積	土	$6 \sim 8$	$2 \sim 4$

栽培試験結果から直播栽培の大地の星は，移植一般栽培の 2 ～ 3 割増しの総窒素量が必要です。生育が物足りない場合 は追肥の回数を増やし ましょう。

基肥の肥料の選び方（大地の星，多収専用）

（1）稲の窒素吸収量を高めたい 6 月中旬～ 7 月上旬に，窒素の効く肥効調節型肥料を選びましょう。
（2）リン酸・カリは土壌診断の結果から，減肥が可能な水田が多いようです。
（3）肥料主成分の形態別の特性を参考に，銘柄の選定や施肥を行いましょう！

＜乾田直播の注意点〉

浅まき奨励のため，播種機の施肥位置が 2 cm 程度と浅い。こ のためアンモニア態窒素は，紫外線などにより分解が早まる ため，肥料の利用効率が低下する。注意が必要。

図 3 カ年のリン酸と加里の分析結果

肥料主成分の形態		特 性	主な肥料
室	硝 酸 態 窒 素	土壌に吸着しづらい。ガスになって逃げやすい。速効性。畑作物に適する。	
	アンモニア態窒素	土壌によく吸着される。畑では多くの場合硝酸態に変わってから作物に吸収。速効性。畑，水田共に適する。	硫 安 塩 リ 安
素	尿 素 態 窒 素	土壌に吸着されないが，アンモニア態に変わってから吸着が強い。アンモニア態から硝酸態への変化が早い。速効性。畑，水田共に適する。	尿 素
	シアミナド態窒素	アンモニア態から硝酸態に変わるのが遅い。肥もちが良い。速効性。	石灰窒素
	タンパク態窒素	土壌の中で微生物からの作用を受けて徐々に分解。アンモニア態から硝酸態に変わる。	魚 油 粕 $^{\text {粕 }}$
リン酸	水 溶 性 リ ン 酸	速効性。水に溶ける。土壌に吸着され固定しやすい。	$\begin{array}{lll} \text { 過 } & & \text { 石 } \\ \text { 重 } \end{array} \text { 過 } \begin{aligned} & \text { 右 } \end{aligned}$
	く溶 性 リン 酸	緩効性。水に溶けない。土壌に固定されない。	熔 リ ン
	有 機 態リン酸	遅効性。	魚 粕
$\begin{aligned} & \hline \text { カ } \\ & \text { リ } \end{aligned}$	力 リ	ほとんど水溶性であるが，米ヌカ，油粕類の一部に不溶性のものがある。微生物の作用 で可溶性になり作物に吸収。	硫 塩 加 加

肥効調節型肥料は，作物の生長にあわせて肥料が発現するようにコントロールされた肥料のことです。施肥効率 を高め窒素流亡を防ぐことで，環境に配慮した施肥が可能となります。施肥のコントロールのための資材が必要な ため，単価はやや高い傾向です。

アンモニア態整素

○流亡しやすく，イネで は生育中後半から地力窒素の発現が頼りであ る。このため多肥傾向 となりやすい。
○根や種子がヤケてしま うため，肥料は離す。

肥効調節型肥料	特 徴	種 類
緩効性 肥 料	分解作用の違う窒素化合物の性質を活か し，作物の生育ステ ージに併せて緩やか に窒素が発現する。	加水分解タイプ（I B） 微生物分解タイプ （オキサミド・ホルム窒素） 複合タイプ（CDU）
被 覆肥 料	肥料粒の表面を被覆 してあり，水分と温度で，一定の肥効を発現する。被覆素材 は合成樹脂，ようり んなどで，2重被覆 されるものもある。	$\begin{aligned} & \text { LPコート } \\ & \text { セラコートR } \\ & \text { シグマコートU } \\ & \text { エムコートL } \\ & \text { ロングショウカル } \end{aligned}$
硝酸化 抑制剤 入肥料	化学的（薬品）に硝酸化成を抑制し，肥料の流亡を防ぎ，肥効を発現させるタイ プの肥料。硝酸化成 を促す細菌の活動を抑制させる。	ジシアンジアミド グアニルチオ尿素 スルファチアゾール チオ尿素

この 2 種類の肥効調節型肥料は，これまで施肥試験結果から良好な成績を収めた銘柄です。
（ 1 ）BBLP211：20－10－10（LP20＋LP40：55\％）

（2）ジシアン入化成708：17－10－8（ジシアン：10\％）

施用量	全窒素	硝酸化 抑制剤	リン酸	加里
20 （1．0袋）	3.4	2.0	2.0	1.6
$30(1.5$ 袋）	5.1	3.0	3.0	2.4
40 （2．0袋）	6.8	4.0	4.0	3.2
50 （2．5袋）	8.5	5.0	5.0	4.0

施用量	全窒素	LP由 来窒素	リン酸	加里
20 （1．0袋）	4.0	2.2	2.0	2.0
30 （1．5袋）	6.0	3.3	3.0	3.0
40 （2．0袋）	8.0	4.4	4.0	4.0

BBLP211はLP由来の窒素が 2 種類ブ レンドされており，直播栽培の生育に あわせて溶出します。

ジシアン入化成 は，同等の窒素施肥量で，試験 を行うと，幼形期の茎数と穂数 が優る傾向です。

追肥は多収と生育促進の切り札！（チャンスは4回）

（1）3つのポイントを総合的に判断して追肥の要否を判断します。

生育時期	効 果	注 意 点
分げつ期 6月20日頃	分げつの促進生育の健全化	漏水が大きいと追肥効果が低下 する。
分げつ盛期 7月1日頃	分げつの増加栄養状態の充実	多肥は過繁茂の原因。過繁茂は倒伏の原因。
幼穂形成期幼穂 2 mm	1 穂籾数の増加	多肥は稈長が伸長し過ぎて，倒伏の原因となる。 低温年は，不稔が増加し，冷害 を助長する。 生育の遅延ともなる。
止 葉 期	籾－粒の充実	二段穂，抱き穂など異常出穂の増加。生育の遅延。

[^0]追肥量は肥料銘柄によって異なります。追肥は1回に多く与えるよりも，回数 を分けて行う方が効果的です。

表 苗立本数•葉色の調査結果と追肥の目安

6月15日頃苗立本数本／m	$\begin{array}{ccc} \hline 1 & \text { 回 } & \text { 目 } \\ \text { 分 げ } つ ~ \\ 6 \text { 月20日期 } \end{array}$		$\begin{aligned} & 2 \\ & \hline \text { 回 目 } \\ & \text { 分 } \\ & \text { 7月盛期 } \end{aligned}$		3 回 見幼穂形成期幼穂 2 mm		$\begin{array}{lll} \hline 4 & \text { 回 } & \text { 目 } \\ \text { 止 } & \text { 葉 } & \text { 期 } \end{array}$		注 意 事 項
S PAD 測 定 値	36以下	36以上	40以下	40以上	40以下	40以上	40以下	40以上	葉色による分類
90 未 満	－	－	－	－	－	－	－	－	廃耕を検討する苗立本数
$\begin{aligned} & 90 \text { 以 上 } \\ & 120 \text { 未満 } \end{aligned}$	4	4	4以下	4以下	4以下	2以下	4以下	2以下	$\begin{aligned} & \text { 劣る苗立本数。茥数•1 } \\ & \text { 穂粒数の両方の増加で構 } \\ & \text { 成要素を確保する。 } \end{aligned}$
$\begin{aligned} & 120 \text { 以上 } \\ & 150 \text { 未満 } \end{aligned}$	$2 \sim 4$	2～4	4以下	4以下	2以下	－	2以下	－	ヤヤ劣る苗立本数。初期生育を向上させ，茎数で構成要素を確保する。
$\begin{aligned} & 150 \text { 以上 } \\ & 180 \text { 末満 } \end{aligned}$	2～4	2～4	2以下	－	2以下	－	－	－	標準的な苗立本数。各生育時期の葉色が淡いとき のみ追肥。
180 以上	2～4	2以下	2以下	－	－	－	－	－	1 回目以降は無理しない

肥料が多すぎた！（倒伏軽減剤の散布の目安とコツ）

止葉期の草丈が 80 cm を超え，葉色が濃く，過繁茂（茎数 750 本 $/ \mathrm{m}^{2}$ 以上）と感じる方は倒伏軽減剤の散布が必要です。

薬剤名	使用時期	10a当り便用量		使用方法
		薬量又は希釈倍率	希釈水量又は散布液量	
$\begin{aligned} & \text { ビビフル } \\ & \text { フロアブル } \end{aligned}$	出穂10～2日前	75～100ml	50～150胱	通常散布
			25～50 \％\％	少量散布
		100 ml	800 ml	無人ヘリコプター

（1）重複散布とならないように，気をつけましょう！
（2）気象予報に注意し，散布直後の降雨に気をつけましょう！
（3）出来ムラがある方は，部分散布でもかまいません。
（4）効果の点から10a当たりの薬量は 100 ml ，希釈水量は多い方を推奨します。

経験者や関係者とよく相談し，散布を決定しましょう！
（2）追肥の資材とその方法

追肥資材	1回のおよその 窒素量kg／10a	肥料の効果の発現	上手な活用方法

 この状態であればほとんどが起き上がってくる。

RONT2

窒素量が多いと倒伏する。早期 の倒伏は，減収 の要因。
倒伏の要因は，過繁茂や稆長の徒長が挙げられる。

[^0]: 写真は6月20日頃の直播のイネです。初生葉と 1 葉 の分けつができています。このイネは茎数は3本です。初期生育が最高な状態と言えます。

