4 ほ場の準備

就郊＊ C 輪作が前提！は種床造成技術の基本

PDINT4 プラウの施工方法

Q1
 プラウ耕がなぜ，均平の前処理に必要 なの？

残椬物の埋設が確実に実行できるこ とが，一番の理由です。
次に，均平時に低みに移動する土壌 が，現状の表土だけになってしまうと，切土部分は地力不足や要素欠乏が顕著 に，盛土は降雨により沈降し，作付期間に悪影響をもたらします。

このため，可能な限り下層の土で均平を行うため，16インチ（約30竍）程度のプラウ耕が必要となります。

左：施工前右：施工後

注意点を教えてください！

①プラウ耕でできた，畦際の開口部は明渠として利用できます。均平機による埋め戻しは，し ないように心がけましょう！
（2）プラウ耕と均平によって，表土の移動が起こり ます。施工前には必ず断面調査を行うとともに，表土と地表から約 30 cm 部分の土の 2 つを土壌分析しましょう。ほ場で対角線に3箇所，実施することが基本です。
③秋（収穫後）にプラウ耕，積雪による沈降，春 の風化後に，均平が理想です。作付作物の管理作業の計画と併せて土づくりの作業計画を考えましょう！

畦際の開口部 は埋めない

施工前後の上層と下層の土襄を把握！
（Q）反転したら，瘦せた土で作付すること になるの？

初めて，もしくは久しぶりにプラウ耕を実施し た場合は質問のようになります。しかし，標準施肥を実施すれば，水稲•麦•大豆は，栄養分が不足となることはありません。
ただし，有機物が不足している場合や，酸欠状態が長期間続いた場合は，砕土性が劣ります。玉 ねぎなどのほ場では，土の移動により，リン酸の不足が懸念されます。

しばらくは固定した面で作付を行うため，戻し返しを輪作しながら適度に行いましょう！徐々に作土を増やしていきましょう！

A 地表（作付側）

プラウ耕は毎年実施が基本。一年おきに，A，Bと名付け地表側 の作付履歷を記録しておく。

輪作時に，水稲，麦，大豆は同 じ面に作付が連作とならないよ うにする。
（維草•病害虫対策）
B
地表から約 30 cm は常に作目徱 土として利用できるよう，土を鍛えておく！

乾田直播の床づくりには， ロータリー耕での耕起は，柔らかい床となり，不向 きです。プラウ耕ができ ない場合は，右の作業機 を駆使しましょう！

－ほ場高低マップの見方

	種別 生能から断然式」が便利て人や所有方法 した上で，導 しましょう	
前進のみ	作 業 方 法	前後進
均平機本体が昇降	昇 降 制 御	トラクタ3点リンクが昇降
\times 均平不可能	ほ場 4 隅	\bigcirc 均平可能
均平機自体に昇降制御機能があるため，個々 が所有するトラクタへの装着が容易である。 コントローラーの脱着も簡単である。	均 平 機 の 共同化の 注 意 点	昇降制御のためのコントローラーをトラク夕内に装着し，3点リンクと連動を行うた め，コントローラーの脱着は可能であるが， トラクタの車種別のオプション部品が必要 であるなど，制約を受ける。
均平板の長さによるが，率引式のため， ラクタが低馬力（60ps）でも作業が可能で ある。	$\begin{array}{lll} \text { 装 } & & \text { 着 } \\ 卜 & \text { ラ } \end{array}$	3点リンク直装のため，トラクタは高馬力，高性能が要求されるが，他の 3 点式作業機 へのレーザー応用が可能。

POINT

均平板に土が抱えきれるなら， トラクタ速度 を速めて良い。約 8～10km／h

PONT2

視界を広く持ち，均平板の昇降状態，モニター昇降サ イン，トラクタの変化から，素早くほ場の高低を掴み取る。 （カラ走りしないためのコツ）

※図はイメージ

PONTB

均平板昇降のモニターを確認しながら，狙いをつけて土を運びましょう！

これまで，一度もレーザー均平機を使用していないほ場では，高低差が大きく，10a当たりの作業時間が多く かかってしまいます。特に麦の連作ほ場などで，不陸（ふろく）が起こり，運土量も大きくなります。直播栽培にチャレンジする前年から，ほ場準備を行いましょう！特にほ場均平が重要です！

土壌を良く乾かすことはトラクタの作業性の向上のみならず，地温が上昇し，微生物の活動が活発になり地力が向上します。

必ず各作業毎に，1時間でも半日でも可能な限り，風や日差しに当て土を乾かしてから，耕起作業を行うよう心がけましょう！

