

1 寒冷地北海道における直播の歴史

－••直搯䧼培の全盛期•••
無芒品種「坊主」と「たこ足直播機」の開発により，当時としては1時間当たり5aのは種が可能でした（苗 の移植は，0．7a程度）。

たこ足直播機とは種風景
－••新しい直搮越培•••
1980年頃からカルパーの使用による苗立ちの向上，湛水直播後の落水によるカ ルパー使用量低減等の技術 が実用化。1986年に乾田は種早期湛水栽培が北海道農業試験場により実用化され ました。
時代の要望とともに，低 コスト・省力化等の栽培が増加しています。

北海道の水稲直播の歴史は，島松村において，中山久蔵が米づくりを成功させた百年以上昔に遡ります。近代に入 ってからは，戦前に労働力不足を解消する技術として普及し，道内の普及面積は15万㘶を超えていました。当時，直播栽培面積が拡大した背景には，手作業であったは種が，たこ足直播機の開発にともない飛躍的に作業性が向上したことが挙げられます。1970年代には，冷害に強い栽培法として，温床苗代，育苗技術，田植機の開発が進み，直播は一度姿を消しました。

農水省は平成 4 年に策定した政策において，望ましい稲作経営体の規模を提示し，直播栽培の導入と普及の必要性を示しました。これは「日本型直播稲作の確立•普及」を今日的課題とし，革新 しようとする動きでした。
美唄地域は，直播栽培の試験導入から25年が経過し，150多の直播団地を築いた雪国の先駆者です。

2 岩見沢地域におけるは種適期

为 5 年間の気象とは種の実際

近年，春先の天候不順の為に気温が低く推移しています。は種時期をしっかりと見極め て作業をすることが重要です。

○ 十分な生育を確保するためには
6月3日頃までに出芽！
過去5年間の平均値では

湛水：5月22日は種乾田：5月10日は種

以上がは種晩限の目安と考えられます。

表 岩見沢平均気温推移（5 力年）

	月	4月			5 月			6 月		積算気温 3～10月	積算 気温 5~9月	岩見沢市	
	旬	上	中	下	上	中	下	上	中			$\begin{aligned} & \text { 反 } \\ & \text { 収 } \end{aligned}$	作 柄
	年 ${ }^{\circ} \mathrm{C}$	3.8	6.0	8.2	10.1	11.5	13.0	14.5	16.0	3，132．2	2，615．2	$\widetilde{\mathrm{kg}}$	数
H2O	平年差	1.9	2.4	1.3	1.3	－ 0.6	－ 0.8	1.2	$\Delta 0.7$	149.3	0.1	569	108
H21	平年差	1.3	1.5	－1．2	3.3	0.2	0.9	1.1	－2．0	58.4	－ 3.5	479	89
H22	平年差	0.7	－ 2.1	－ 2.6	0.7	－ 0.5	－ 1.1	－0．1	3.0	201.8	219.1	522	99
H23	平年差	0.2	$\triangle 0.4$	$\triangle 0.7$	－ 2.0	－ 1.1	－ 0.3	0.7	0.4	89.8	89.2	560	105
H24	平年差	－ 3.3	－ 1.1	2.5	3.0	－1．3	0.3	1.5	－1．2	276.0	245.6	574	106

図 気象経過から見たは種の目安（6月3日までの出芽として）

は種時期が早い場合，温度が確保できず，出芽までに時間がかかり，苗立ち本数のフ レ幅が大きくなっています。逆には種時期 を遅くした場合，苗立ち本数は安定してき ますが，出芽が遅くなることから，十分な生育量が確保できなくなります。湛水で5月18日頃から，乾田で5月8日頃のは種で苗立ちが安定してきます。

収量では湛水で5月16日頃，乾田で5月 12日頃のは種で平均収量を上回っています。 は種が早い場合，苗立ち状況も影響し，収量差のフレ幅は大きくなります。逆には種 を遅くした場合，生育に必要な期間が確保 されず，平均収量を下回っています。

表 は種日毎の苗立ち本数と収量の分布状況

湛 乾	区 分	$\begin{aligned} & \text { 個体数 } \\ & n=325 \end{aligned}$	平均苗立 ち 本 数	標 準 偏 差	湛 乾	区 分	$\begin{aligned} & \text { 個体数 } \\ & n=325 \end{aligned}$		標 偏 差
湛	～5／14	13	195.2	64.4	湛	$\sim 5 / 14$	13	15.9	70.1
	5／15～5／17	32	198.1	50.8		5／15～5／17	32	32.8	46.6
	5／18～5／20	15	189.5	30.3	水	5／18～5／20	15	－19．2	49.6
水	5／21	7	205.4	30.7		5／21～5／23	7	－27．9	82.4
	5／24～	4	166.3	19.6		5／24～	4	13.8	99.0
乾	$\sim 5 / 7$	86	181.2	55.0		$\sim 5 / 7$	86	9.5	54.5
	5／8～5／10	23	186.1	40.4		5／8～5／10	23	7.1	77.5
	5／11～5／13	100	191.6	45.0		5／11～5／13	100	13.2	55.7
田	5／14～5／16	27	184.7	47.3	乾田	5／14～5／16	27	10.1	45.0
	5／17～	18	166.7	30.0		5／17～	18	－13．7	52.3

図 は種日と苗立本数（平成20～24年実績より）

図 は種日と平均収量との差（平成20～24年実績より）
＜過去 5 年以上の実績と気象経過から＞

苗立ち確保•収量アップに向けて適期は種基準は

湛水～5月16～22日乾田～5月6～12日

と設定します。

表 苗立ち本数との収量差分布状況 （H2O～24年実績より）

$\begin{aligned} & \text { 湛 } \\ & \text { 乾 } \end{aligned}$	苗立ち本数	$\begin{gathered} \text { 個 体 数 } \\ n=325 \end{gathered}$	平均収量と の差（kg／10a）	$\begin{array}{ll} \hline \text { 標 } & \text { 準 } \\ \text { 偏 } & \text { 差 } \\ \hline \end{array}$
湛	～100	2	－27．3	39.1
	101～150	9	－1．3	29.1
水	151～200	27	23.7	70.8
	201～250	26	－5．8	57.9
	251～	7	58.0	53.1
乾	~ 100	5	－0．3	54.2
	101～150	61	－2．7	49.9
田	151～200	99	1.0	59.5
	201～250	64	27.2	53.1
	251～	25	26.3	54.9

ここまでを整理すると以下のようになります。

	湛 水 直 播	乾 田 直 播
6月3日の出艼を目標と した時のは種晩限	5月22日頃	5月10日頃
苗立ち確に保に向けたは種 適期	5月18日頃	5月8日頃
収量が平均を超えるは種 時期	5月16日頃	5月12日頃

以上を踏まえて

3 種子の準備を怠りなく

（1）高蛋白（8．5\％以上）により，粘りが少なく，ピラフ，炒飯，
リゾット，パエリア等の加エ米飯に最適です。
（2）直まき栽培では発芽性が極めて良好です。
（3）耐冷性が極強で，冷害を受けやすい南空知に適した品種です。
（4）葉いもち病の耐病性は強です。

系譜 母：空育151号 父：ほしのゆめ

表 直播栽培の主要 2 品種の特徴

大地の星	項目	ほしまる
発芽が強い ©	発芽勢と率	発芽が弱い \triangle
早中 ©	早晩性（出穂）	早中 ©
中早 \bigcirc	早晩性（成熟）	早晩 ©
極強 ©	耐冷性	強 ○
強 ○	葉いもち耐病性	ヤヤ弱 \triangle
中～ヤ強 ○	耐倒伏性	中～ヤ強 ○
大粒 ○～0	形質と収量	大粒 ○～©
中中 \times	食味	上下 ©

「大地の星」は大粒で，千粒重は約28gで，多収を目指 せる早生の品種です。

POINT

幼形期に「大地の星」 は，平均4，5本程度の有効茎数が確保 できる。

直まき「大地の星」の工夫次第で！

「大地の星」は，業務用米として流通している ので，消費者には，ほとんど知られていません。調理方法の研究は，地元でも始まったばかりです。魅力ある食材として，可能性を秘めている，府県 にはない品種です。

「大地の星」は，野菜などと同じ食材の一つと考 え，工夫により様々な調理が可能です。みなさん も，お試しください。

左：「大地の星」右：「あきほ」 ※平成14年度，上川農業試験場

お好みでお選びください北海道米の個性MAP II

変わります。この围•生マップはあくまだ参考としてご利用ください。

－パエリア・リゾット
－ライスサラダ・ピラフ
－チャーハン・デザート
－スープの具

北海道のお米はおいしくなり ました。「ほしのゆめ」「なな つぼし」。最近では「ゆめぴ りか」がデビューし，コシヒ カリを超える美味しさです。大地の星はピラフなど（冷凍米飯専用）味を付けた調理に向くお米として，平成15年（2006年）3月9日にデビューしま した。

くは種量の目安と苗立の目標〉 ：大地の星（乾籾の重さで表示）

（1）湛水（催芽籾）8～10kg／10a程度 苗立本数：180本／ m^{2} 以上（発芽率 60% 以上）
（2）乾田（催芽籵） $12 \mathrm{~kg} / 10$ a程度 苗立本数： 180 本 $/ \mathrm{m}^{2}$ 以上（発芽率 50% 以上）
（3）乾田（乾 籾） $10 \sim 15 \mathrm{~kg} / 10 \mathrm{a}$ 程度 苗立本数： 180 本 $/ \mathrm{m}^{2}$ 以上（発芽率 40% 以上）

＜湛水と乾田（催芽籾の場合）の種子準備の｜POINT＞

（1）消毒•浸漬は移植と同様に行う。（温湯消毒も可）
（2）直播種子の催芽時期は気温が上昇してくるので要注意！ （芽が伸びやすい）
（3）は種前日には陰干すること。
（濡れていると，ホッパーから落ちづらい）

＜乾田乾料播種法の種子の準備の｜POINT ${ }^{\prime}$＞

（1）購入種子を使用する（厳守）。
（2）自家採種は厳禁（指定病害の蔓延防止のため）
（3）購入後は冷暗所に保管する（種子の鮮度保持）。

〈催芽〉

循環式催芽機を使用 の方は新しい水で食酢液を作り催芽して ください。

（褐条病対策）

4． 2% 穀物酢 50倍催芽処理

未消毒種子でタフブロッ ク（200倍）の催芽時24時間浸漬を行う方

> 200倍液を作り, 催芽を行って下さい。
> (他の種子消毒剤との併用は不可×)

種子消毒の徹底を！

種子消毒の再確認事項！

－浸漬日数は何日がいいの？$\rightarrow 12^{\circ} \mathrm{C}$ が確保できれば 5 日で充分です！

$11 ~ 12^{\circ} \mathrm{C}$ の水温を安定して保てる場合， $5 \sim 6$ 日で充分です。低温に遭遇すると発芽が不揃い になります。日数の問題よりも，水温を安定して保つことに配慮しましょう。また高温の場合 は発芽勢の良い種子の発芽が始まり，同様に不揃いとなります。水は腐敗防止のために，最低 でも2～3日に1回は水の交換を行いましょう。温湯消毒処理法で処理した場合は，1日置き に水の交換が必要です。

塩水選のやり方は？\rightarrow 比重計が必要です！

指定購入種子（採種ほ産種子）は，十分な選別作業を行っているので基本的には必要ありませ ん。正確に塩水選を実施する場合は，比重計を用います。水10少に対して食塩1．4～1．6kgが必要です。水に塩を入れよく攪拌したのち，比重計を浮かべます。示す値が1．06～1．08がうる ち種，1．08～1．10がもち種の目安です。水や塩でこの比重の塩水となるように調整します。乾籾種子をその水槽に入れ，よく攪拌したのち，浮いた種子をザルなどで除去します。沈んだ種籾をよく水洗いして，塩分を除いた後にネットに袋詰めします。あまり多い量を一度に行うと精度が落ちます。

－浴比って何？\rightarrow 重量の比です！

浴比は重量で表します。種子を浸漬するときの，浴比1：2とは，種子1の重量に対し水2 の重量を示しています。100kgの種子に対しては200少し約200kg）の浸漬水の用意が必要です。 なお，薬液と籾の量を1：1の比で示しますが，これは容積比です。種子（水分15\％程度）20kgは約40榄に相当します。100kgの種子の場合は容積は約200少火なので，1：1の表記では水200「バルが必要です。表記の違いを理解し，間違えないように注意しましょう！

乾田乾粏播種法の解説
（1）この技術のねらい（5つ）

- 種子の準備の徹底した省力化と，減農薬の推進。
- 乾籾と畑作雑草の出芽時期の差を利用した，

ラウンドアップマックスロードの出芽前処理に よる畑作雑草の撃退！
－生命力のある種子が生き残る作用を利用した，自然状態での間引き。

- 播種機の稼働率の向上と，は種適期の拡大。
- 種子の鮮度保持。

（2）注意事項（6つ）

- 成熟期はやや遅れる傾向です。
- は種前に土壌が乾燥していても，土壌水分が 20% を切ることはなく，種子の過乾燥の心配は ありません。
－5～10mmのは種深度を守り，しっかりと 2 度鎮圧することで苗立ちは良好となります。
－播種機のは種量の再調整がなく，種子ホッパー の滑りも良好なため，作業や機械の共同化がス ムーズです。（は種の能率が向上）
－消毒種子でないため，は種日は必要以上に早め ない。（は種始は4月26日以降から）
－は種後の過剰な入水や低温時の入水は，種子の腐敗を増加させます。

催芽籾は湿り気があり，発芽状態もバラツキがあり，種子ホッパーや種子排出部が詰まりやすい。特に，は種ダ クトの傾斜が緩いものはは種精度，は種効率が落ちる。機械の機構も乾いたものをまく設定である。そのため乾籾を推奨する。

POINT

＜ばか苗病〉
今後，気をつけておくべ き種子伝染病害です。
育苗中に高密度，高温過湿で発病し，発生密度が
高い場合本田でも発生し ます。健全な稲より，徒長するのが特徴で，発病後半の本田では胞子を付けます。胞子は発病水田のみならず，近隣に100m以上も飛来し，籾に付着します。
※写真 中央農業試験場

（3）今後の課題（3つ）

－は種量が全国的にも多く，10a当り12kg程度です。（種子代 1 キ ${ }^{\ddagger}$ 約480円）
－団地形成された場合は，必要種子量が多く，安定した供給体制が必要です。（供給側の課題） －現地試験の結果から，購入の未消毒乾籾種子の使用による病害虫曼延の危険性は，育苗方式より極めて少ないですが，今後は安全性について研究機関の確認が必要です。（研究課題）

＜種子の取り扱いについて＞

乾田乾籾播種法は優れた技術ですが，種子の取 り扱いには十分注意が必要です。研究会でよく相談し，病害虫に対する注意を怠らないよう努 めてください。

自家採種は厳禁！！

