

1 小麦と大豆の連作はもうやめよう！

J Aいわみざわ管内の転作作物では，小麦と大豆の作付比率が高く，特に小麦の作付比率が高いため，連作や大豆との交互作となっています。このことで雑草や土壌病害虫の被害が大きくなり，収量や品質の低下の原因となっ ています。

また，土壌に耕盤層が形成されていると，土が硬いため，作物の根の伸長が阻害され，気象被害を受けやすくな ります。また，ほ場に起伏があると，低地に水が溜まり，湿害を受けやすくなります。

最近では，集中豪雨や干ばつなど，異常気象が続いていることから，「気象変動に強い作物生産」と「収量性を重視した栽培」を目指すには，土づくりを根本的に見直す必要があります。

図 H24年産秋小麦と大豆における前作作物の面積割合

低収要因①：猛威をふるう病害

連作や交互作によって，病原菌の密度は高まっており，被害が拡大しています。しかし，眼紋病や立枯病は，3年以上の輪作で被害を抑えられます。雪腐病は，防除時期が根雪前なので，散布時期を逃したり，薬剤の効果が切れて しまう可能性があります。そのため，耕種的防除で，あらかじめ病原菌密度を減らしておくことは有効な手段です。

眼紋病

立枯病の発生ほ場

雪腐病（褐色雪腐病）

耕種的防除を基本にして，効果的 に薬剤を使用することが防除効果 が高く，また，コスト低減につな がります。薬剤防除だけに頼るの では＂いたちごっこ＂になるだけ ではなく，耐性菌の出現というリ スクが生じます。

低収要因（2）：異常気冢に弱いほ場環境

近年，集中豪雨や干ばつなど異常気象が，生育不良や減収の要因となっています。
そのため，①根域を妨げない膨軟なほ場，②余剰水を速やかに排水できるほ場，が求められています。耕盤層の形成 やほ場の起伏が問題となっており，それらが気象被害を助長しています。そのため，ほ場環境の改善が急務と言えます。

耕盤層の形成

根の伸長を阻害します。根域が狭いと，養分•水分の吸収能力が低下します。 また，耕盤層は水の縦浸透を阻害す るので，湿害が起こりやすくなります。 ほ場の起伏
水は低地に移動するので，気象によ って凹部分では湿害，凸部分では干 ばつとなりやすくなります。

2 無代かき栽培が必要な理由とは

転作田を固定して，小麦と大豆の連作や交互作を続けていくと，収量•所得が低下する負のスパイラルに陥るこ とになります。そこから抜け出すためには，輪作体系の確立が必要です。小麦と大豆の他に，新たに第3 の畑作物 を導入することも考えられますが，作り慣れた水稲を組み入れた輪作こそが，空知型輪作体系です。

田畑輪換は昔から行われていますが，透排水性が劣り，畑地化しにくいなど課題があって，転作田は固定化され てきました。しかし，無代かき栽培は，代かきをしないので，畑地化しやすく，田畑輪換が容易となります。

なぜ代かき栽培？

負のスパイラルから抜け出せる！！

ナタネタビラコ

物理性改善

眼紋病による倒伏軽減

POTNT麦収穫後の好天時期 にプラウ耕が可能水稲作付け前にほ場 の起伏を修正する

均平化

POUNT －

3 将来を見据えて，輪作体系を段階的にステップアップ

小麦と大豆の連作や交互作となっている場合は，まずは無代かき栽培に取り組み，田畑輪換を行い，水稲を含め た3年3作の輪作を検討しましょう。田畑輪換することで，輪作できるほ場が広がり，スムーズに輪作ができるよ うになります。

しかし，さらに将来を見据えると，3年3作では作物の間隔が十分ではありません。そのため，輪作体系のさら なる充実と，収益性向上を目指して，「なたね」や「デントコーン」「露地野菜」等を取り入れた輪作を行っている農業者も増えてきています。

「デントコーン」を導入する場合

なたね

デントコーン

戸別所得補償制度の対象作物なら

【なたね】
－小麦の前後作となり，輪作をしやすい作物です。 また，必要な作業機械も麦•大豆用を使用できる ので，新規投資が不要です。
【デントコーン】
－根域が広く，深く伸長する根は，耕盤層を貫通 し，土壌の物理性を改善できます。
－残誼物を鋤き込むことで，有機物を補給できま す。

- 除草剤の効果が高く，雑草対策として有効です。
- 労働時間が少なく，他作物との労働競合が少ない作物です。
- 耕畜連携の取り組みが必要です。
- 需要動向が不明確であり，また，面積当たりの収益性は高くありません。

露地野菜（人参）

露地野菜（南瓜）

政策に影響をれない足腰の強い経掌を目指すなら

【露地野菜】

- 小麦の前後作となります。
- 収益性が高いです。
- 新たに導入する場合は，新規投資が発生します。
- 労働力が必要です。

4 空知型輪作体系に残されている課題

空知型輪作体系を実践し，無代かき栽培や乾田直播を導入するにあたって，課題がいくつかあります。課題（1）：機械の導入コストと有効利用（機械の利用面積の確保）
課題（2）：復田時の高タンパク化
課題（3）：復田時の水もち・畑転換時の排水性
課題（4）：雑草対策
課題（5）：土壌窒素の有効活用がされるが故に，有機物を補給しないと，地力減退していく

課題（1）：機械の導入コストと有効利用

機械装備がなく，新たな投資が必要になる場合は，負担金額は作物の増収分で賄うことができるよう，利用面積は20ha以上を確保しましょう。
例）秋小麦の場合
（1俵当たり品代3，180円，数量払6，450円）
10a当たり20kgの増収で，約3，200円の所得を生みます。連作障害や，湿害などで減収していた金額を試算して負担金額と比較してみましょう。

図 利用面積当たりの10a当たりの年間負担金額

課題②：復田時の高タンパク化

復田時は，乾土効果で地力窒素の発現量が増大します。特に生育後半に増大する傾向があるので，タンパク値 が高くなりやすいです。
しかし，収量は高くなる傾向ですので，高タンパク値 でも需要のある「契約きらら」や乾田直播では「大地 の星」を選び，多収を狙いましょう。
しかも減肥が可能なので，肥料費が低減できます。

図 水稲のN吸収経過（無窒素区）（北村1984） （北海道の米づくり（2011年版）より引用）

課題（3）：復田時の水もち・畑転換時の排水性

田畑輪換の宿命とも言えますが，水もちと排水性の両方を兼ね備えている必要があります。
そのため，復田する際は，しっかりと鎮圧することや，畦畔の補修など水田基盤の整備を行うことが必要です。畑転換する際は，心土破砕や明渠の設置など，排水対策を入念に行うことが必要です。

ケンブリッジローラーによる鎮圧

排水対策（明渠の設置）

課題（4）：稚 草 対 策

前作物の栽培期間や収穫後の雑草対策を怠らないこと が重要です。
雑草対策の基本は，雑草の種子をほ場に落とさないこ とです。多量の種子を落とした（雑草が多かった）ほ場は翌年は代かき栽培か畑作物に切り替えるようにし ましょう。

雑草対策に失敗した乾田直播ほ場

課題（5）：地 力の減退

田畑輪換により乾土効果が得られ，土壌窒素が有効活用できますので，当面は肥料を抑えた栽培が可能です。 さらに，数年おきに復田（入水）するため，天然のミ ネラルと酸素を補給できますので，畑地帯よりも恵ま れた環境にあります。
しかし，土壌窒素は放出するのみでは，当然のことな がら，地力はどんどん減退していきます。堆肥などを計画的に投入できることがベストですが，稲わらや麦稈などをほ場に還元していけば，地力減退 の進行を遅らせることはできます。 それぞれ可能なところから取り組んでいきましょう。

